Sdp Approximation of the Half Delay and the Design of Hilbert Pairs

نویسنده

  • Bogdan Dumitrescu
چکیده

This paper presents a method for designing an orthogonal Hilbert pair of wavelets. The wavelets are generated each by an orthogonal (CQF) filter bank. The scaling filter defining the first filter bank and wavelet is given. The second filter is optimized using an exact semidefinite programming (SDP) description of a special H∞ error measure of the half-sample delay. The result of the SDP problem is then refined to meet the orthogonality conditions. Experimental results show that the proposed method can bring significant improvement to Hilbert pairs designed with other methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Class of Hilbert Pairs of Almost Symmetric Orthogonal Wavelet Bases

This paper proposes a new class of Hilbert pairs of almost symmetric orthogonal wavelet bases. For two wavelet bases to form a Hilbert pair, the corresponding scaling lowpass filters are required to satisfy the half-sample delay condition. In this paper, we design simultaneously two scaling lowpass filters with the arbitrarily specified flat group delay responses at ω = 0, which satisfy the hal...

متن کامل

Approximation of fixed points for a continuous representation of nonexpansive mappings in Hilbert spaces

This paper introduces an implicit scheme for a   continuous representation of nonexpansive mappings on a closed convex subset of a Hilbert space with respect to a   sequence of invariant means defined on an appropriate space of bounded, continuous real valued functions of the semigroup.   The main result is to    prove the strong convergence of the proposed implicit scheme to the unique solutio...

متن کامل

A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function

By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...

متن کامل

Viscosity approximation methods for W-mappings in Hilbert space

We suggest a explicit viscosity iterative algorithm for nding a common elementof the set of common xed points for W-mappings which solves somevariational inequality. Also, we prove a strong convergence theorem with somecontrol conditions. Finally, we apply our results to solve the equilibrium problems.Finally, examples and numerical results are also given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007